If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20^2=4x^2-(2)(0.25)(40)
We move all terms to the left:
20^2-(4x^2-(2)(0.25)(40))=0
We add all the numbers together, and all the variables
-(4x^2-2(0.25)40)+400=0
We calculate terms in parentheses: -(4x^2-2(0.25)40), so:We get rid of parentheses
4x^2-2(0.25)40
We add all the numbers together, and all the variables
4x^2-20
Back to the equation:
-(4x^2-20)
-4x^2+20+400=0
We add all the numbers together, and all the variables
-4x^2+420=0
a = -4; b = 0; c = +420;
Δ = b2-4ac
Δ = 02-4·(-4)·420
Δ = 6720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6720}=\sqrt{64*105}=\sqrt{64}*\sqrt{105}=8\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{105}}{2*-4}=\frac{0-8\sqrt{105}}{-8} =-\frac{8\sqrt{105}}{-8} =-\frac{\sqrt{105}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{105}}{2*-4}=\frac{0+8\sqrt{105}}{-8} =\frac{8\sqrt{105}}{-8} =\frac{\sqrt{105}}{-1} $
| 36+0.25y=60 | | 6m=112.75+8.75= | | 4n-4n=6 | | -⅓+2z=-⅚ | | x-11.02=5.48 | | x-11.02=5.48 | | x-11.02=5.48 | | x-11.02=5.48 | | 3/5g–⅓=-10/3 | | 2x25+x=8+4x+2x+2 | | 2x25+x=8+4x+2x+2 | | 2x25+x=8+4x+2x+2 | | 2x25+x=8+4x+2x+2 | | 2x25+x=8+4x+2x+2 | | X-2(4y)=35 | | 2x25+x=8+4x+2x+2 | | 0.3-12-1.1x=1.1x-20-1.1x | | 3+p/3-4p=1-p+8/2 | | 9x+12=18x-34 | | 5(x-4)=7(x+3)-2(x+1) | | C=15.00-0.20x | | C=15.00-0.20x | | C)=15.00-0.20x | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | .36(s+50)=288 | | .36(s+50)=288 | | 3w2-8w-16=0 | | 3w2-8w-16=0 | | x+73+x+117=180 | | 9.7x+3-7.7x=5 |